Quantifizieren Sie den Wert von Netskope One SSE – Holen Sie sich die Forrester Total Economic Impact-Studie™ 2024

Schließen
Schließen
  • Warum Netskope? Chevron

    Verändern Sie die Art und Weise, wie Netzwerke und Sicherheit zusammenarbeiten.

  • Unsere Kunden Chevron

    Netskope betreut weltweit mehr als 3.400 Kunden, darunter mehr als 30 der Fortune 100

  • Unsere Partner Chevron

    Unsere Partnerschaften helfen Ihnen, Ihren Weg in die Cloud zu sichern.

Ein führendes Unternehmen im Bereich SSE. Jetzt ein führender Anbieter von SASE.

Erfahren Sie, warum Netskope im Gartner® Magic Quadrant™️ 2024 für Single-Vendor Secure Access Service Edge als Leader debütiert

Report abrufen
Customer Visionary Spotlights

Lesen Sie, wie innovative Kunden mithilfe der Netskope One-Plattform erfolgreich durch die sich verändernde Netzwerk- und Sicherheitslandschaft von heute navigieren.

Jetzt das E-Book lesen
Customer Visionary Spotlights
Die partnerorientierte Markteinführungsstrategie von Netskope ermöglicht es unseren Partnern, ihr Wachstum und ihre Rentabilität zu maximieren und gleichzeitig die Unternehmenssicherheit an neue Anforderungen anzupassen.

Erfahren Sie mehr über Netskope-Partner
Gruppe junger, lächelnder Berufstätiger mit unterschiedlicher Herkunft
Ihr Netzwerk von morgen

Planen Sie Ihren Weg zu einem schnelleren, sichereren und widerstandsfähigeren Netzwerk, das auf die von Ihnen unterstützten Anwendungen und Benutzer zugeschnitten ist.

Whitepaper lesen
Ihr Netzwerk von morgen
Netskope Cloud Exchange

Cloud Exchange (CE) von Netskope gibt Ihren Kunden leistungsstarke Integrationstools an die Hand, mit denen sie in jeden Aspekt ihres Sicherheitsstatus investieren können.

Erfahren Sie mehr über Cloud Exchange
Luftaufnahme einer Stadt
  • Security Service Edge Chevron

    Schützen Sie sich vor fortgeschrittenen und cloudfähigen Bedrohungen und schützen Sie Daten über alle Vektoren hinweg.

  • SD-WAN Chevron

    Stellen Sie selbstbewusst sicheren, leistungsstarken Zugriff auf jeden Remote-Benutzer, jedes Gerät, jeden Standort und jede Cloud bereit.

  • Secure Access Service Edge Chevron

    Netskope One SASE bietet eine Cloud-native, vollständig konvergente SASE-Lösung eines einzelnen Anbieters.

Die Plattform der Zukunft heißt Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG) und Private Access for ZTNA sind nativ in einer einzigen Lösung integriert, um jedes Unternehmen auf seinem Weg zur Secure Access Service Edge (SASE)-Architektur zu unterstützen.

Netskope Produktübersicht
Netskope-Video
Next Gen SASE Branch ist hybrid – verbunden, sicher und automatisiert

Netskope Next Gen SASE Branch vereint kontextsensitives SASE Fabric, Zero-Trust Hybrid Security und SkopeAI-Powered Cloud Orchestrator in einem einheitlichen Cloud-Angebot und führt so zu einem vollständig modernisierten Branch-Erlebnis für das grenzenlose Unternehmen.

Erfahren Sie mehr über Next Gen SASE Branch
Menschen im Großraumbüro
SASE-Architektur für Dummies

Holen Sie sich Ihr kostenloses Exemplar des einzigen Leitfadens zum SASE-Design, den Sie jemals benötigen werden.

Jetzt das E-Book lesen
SASE-Architektur für Dummies – E-Book
Steigen Sie auf marktführende Cloud-Security Service mit minimaler Latenz und hoher Zuverlässigkeit um.

Mehr über NewEdge erfahren
Beleuchtete Schnellstraße mit Serpentinen durch die Berge
Ermöglichen Sie die sichere Nutzung generativer KI-Anwendungen mit Anwendungszugriffskontrolle, Benutzercoaching in Echtzeit und erstklassigem Datenschutz.

Erfahren Sie, wie wir den Einsatz generativer KI sichern
ChatGPT und Generative AI sicher aktivieren
Zero-Trust-Lösungen für SSE- und SASE-Deployments

Erfahren Sie mehr über Zero Trust
Bootsfahrt auf dem offenen Meer
Netskope erhält die FedRAMP High Authorization

Wählen Sie Netskope GovCloud, um die Transformation Ihrer Agentur zu beschleunigen.

Erfahren Sie mehr über Netskope GovCloud
Netskope GovCloud
  • Ressourcen Chevron

    Erfahren Sie mehr darüber, wie Netskope Ihnen helfen kann, Ihre Reise in die Cloud zu sichern.

  • Blog Chevron

    Erfahren Sie, wie Netskope die Sicherheits- und Netzwerktransformation durch Secure Access Service Edge (SASE) ermöglicht

  • Events und Workshops Chevron

    Bleiben Sie den neuesten Sicherheitstrends immer einen Schritt voraus und tauschen Sie sich mit Gleichgesinnten aus

  • Security Defined Chevron

    Finden Sie alles was Sie wissen müssen in unserer Cybersicherheits-Enzyklopädie.

Security Visionaries Podcast

A Cyber & Physical Security Playbook
Emily Wearmouth und Ben Morris untersuchen die Herausforderungen beim Schutz internationaler Sportveranstaltungen, bei denen Cybersicherheit auf physische Sicherheit trifft.

Podcast abspielen Alle Podcasts durchsuchen
Ein Playbook für Cyber- und physische Sicherheit, mit Ben Morris von World Rugby
Neueste Blogs

Lesen Sie, wie Netskope die Zero-Trust- und SASE-Reise durch SASE-Funktionen (Secure Access Service Edge) ermöglichen kann.

Den Blog lesen
Sonnenaufgang und bewölkter Himmel
SASE Week 2024 auf Abruf

Erfahren Sie, wie Sie sich in den neuesten Fortschritten bei SASE und Zero Trust zurechtfinden können, und erfahren Sie, wie sich diese Frameworks an die Herausforderungen der Cybersicherheit und Infrastruktur anpassen

Entdecken Sie Sitzungen
SASE Week 2024
Was ist SASE?

Erfahren Sie mehr über die zukünftige Konsolidierung von Netzwerk- und Sicherheitstools im heutigen Cloud-dominanten Geschäftsmodell.

Erfahre mehr zu SASE
  • Unternehmen Chevron

    Wir helfen Ihnen, den Herausforderungen der Cloud-, Daten- und Netzwerksicherheit einen Schritt voraus zu sein.

  • Karriere Chevron

    Schließen Sie sich den 3.000+ großartigen Teammitgliedern von Netskope an, die die branchenführende Cloud-native Sicherheitsplattform aufbauen.

  • Kundenlösungen Chevron

    Wir sind für Sie da, stehen Ihnen bei jedem Schritt zur Seite und sorgen für Ihren Erfolg mit Netskope.

  • Schulungen und Akkreditierungen Chevron

    Netskope-Schulungen helfen Ihnen ein Experte für Cloud-Sicherheit zu werden.

Unterstützung der Nachhaltigkeit durch Datensicherheit

Netskope ist stolz darauf, an Vision 2045 teilzunehmen: einer Initiative, die darauf abzielt, das Bewusstsein für die Rolle der Privatwirtschaft bei der Nachhaltigkeit zu schärfen.

Finde mehr heraus
Unterstützung der Nachhaltigkeit durch Datensicherheit
Helfen Sie mit, die Zukunft der Cloudsicherheit zu gestalten

Bei Netskope arbeiten Gründer und Führungskräfte Schulter an Schulter mit ihren Kollegen, selbst die renommiertesten Experten kontrollieren ihr Ego an der Tür, und die besten Ideen gewinnen.

Tritt dem Team bei
Karriere bei Netskope
Die engagierten Service- und Support-Experten von Netskope sorgen dafür, dass Sie unsere Plattform erfolgreich einsetzen und den vollen Wert ihrer Plattform ausschöpfen können.

Gehen Sie zu Kundenlösungen
Netskope Professional Services
Mit Netskope-Schulungen können Sie Ihre digitale Transformation absichern und das Beste aus Ihrer Cloud, dem Web und Ihren privaten Anwendungen machen.

Erfahren Sie mehr über Schulungen und Zertifizierungen
Gruppe junger Berufstätiger bei der Arbeit

The Eight “Must-Haves” for Successful Anomaly Detection

Feb 10 2016
Tags
Anomaly Detection
Cloud Access Security Broker
Cloud Best Practices
Cloud Computing
Cloud Security
Tools and Tips

Traditional anomaly detection methods are either rule-based, which doesn’t generalize well since the rules are too specific to cover all possible scenarios or time-series based, (time vs. quantity) which is too low-dimensional to capture the complexity of real life. Real-life events have higher dimensions (time, both source and destination locations, activity-type, object-acted on, app used, etc.) A successful anomaly detection system will have eight “must-have” features.

Before we go through those features, at the highest level the system must be one that “allows” rather than “blocks” and is based on machine learning.

The reason why an allow list is critical is because it studies the good guys. Bad guys try to hide and outsmart block-based platforms like anti-malware. A successful machine-learning anomaly detection system won’t chase bad guys, looking for “bad-X” in order to react with “anti-X.” Instead, such a platform that is allow-based can study what is stable (good guys’ normal behavior) and then look out for outliers. This approach avoids engaging in a perpetual and futile arms race.

If you’re going to do anomaly detection the right way, you need to be able to scale to billions of events per day and beyond. It’s not practical at that scale to define allow lists a-priori, or keep a perfect history of all observed behavior combinations. Instead, anomaly detection models should be “soft” in the sense that they always deal with conditional probabilities of event features and are ever-evolving.

The second high-level requirement is that a successful anomaly detection system must be machine learning-based. Virtually every CASB today uses this term, but few mean it. Machine learning means just what it says, that pattern recognition should be done by the computer without being specifically told what to look for. There are two main types of machine learning: Supervised and unsupervised. The former is where the computer learns from a dataset of labeled training data whereas the latter is where the computer makes sense of unlabeled data and finds patterns that are hard to find otherwise. Both supervised and unsupervised machine learning are relevant for this blog, and from here on out I’ll simply refer to anomaly detection as “Machine Learned Anomaly Detection,” or “MLAD” for short.

Now that we have established some high-level requirements, let’s dive into the eight “must-haves” for effective MLAD.

Noise resistance: A common issue with all anomaly detection systems is false-positives. In reality, it’s hard to avoid false positives entirely because in the real world there’s always an overlap between two distributions with unbounded ranges and different means. The chart below, which includes two distributions from the same data set of test results, shows this. Move the criterion threshold value to the right and you get fewer false-positives (FPs). The problem is that by doing this you’ll be also getting a growing number of false negatives (FNs). There is always a tradeoff.

While it is difficult to avoid false-positives, a successful MLAD system will take steps to help the user filter noise. Applying this model to cloud security, observing new users or devices, by definition, will generate patterns that are seen for the first time (a new IP address, a new application, a new account, etc. will appear). Good MLAD will learn source habits over time and flag anomalies only when, statistically, the event stream from a source, such as a user or device, is considered seasoned, or established enough.

More critically, MLAD must support a likelihood metric per event. Operators can display only the top N most unlikely/unusual events, sorted in descending order, while automatically filtering out any other event with a less than “one in a thousand,” or “one in a million” estimated probability to occur. Often these per-event likelihood metrics are based on the machine-learned statistical history of parameter values and their likelihood to appear together in context, for any source. It is up to the user to set the sensitivity thresholds to display what they want to see. This type of approach flags “rareness” and not “badness.”

Multi-dimensionality and generality: Successful MLAD platforms don’t rely on specific, hard-wired rules. Machine-learned anomalies are no longer unidimensional, such as “location-based,” “time-based,” etc. Instead, they are designed to detect anomalies in multiple, multi-dimensional spaces. You must look at every feature you can collect and that makes sense in every event and consider many features as a whole when calculating the likelihoods of each combination. An anomaly may be triggered due to one unusual value in a dimension, or a combination of multiple dimensions falling out of bounds. Features can be categorical or numeric, ordered or not, cyclical or not, monotonic or non-monotonic.

Worlds in deep space

Robustness and ability to cope with missing data: Traditional batch machine learning clustering methods suffer from two critical issues:

  • They break in the face of incomplete data, such as missing dimensions in some events.
  • Due to the curse of dimensionality and the way distance metrics between multi-dimensional points are computed, they lose their effectiveness in high-dimensions (typically about five dimensions).

A good MLAD platform doesn’t rely on traditional batch clustering such as k-means. It is feature agnostic, dimension agnostic and can deal with missing or additional dimensions (features in an event) on the fly, as they appear.

Adaptability and self-tuning: Over time, even the most persistent habits tend to change. Users may switch to other applications, move to new geographical locations, etc. A platform that is based on machine learning adapts over time to new patterns and user habits. Old unusual patterns become the new norm if they persist for a long enough period. All conditional event probabilities keep updating over time.

Since organizations tend to be very different in the usage profiles, cloud app mix, event dimensions, and number of users, it’s important to keep a separate model for each organization and let it shift over time based on that organization’s change over time.

Future-proofing: An MLAD platform is agnostic to the semantics of input features. All it cares about is the statistical probability of each feature to occur in its specific context. We can add features (think about installing a new security camera, or any other new sensor) without code changes to the platform. The moment a new event source is introduced as a new input is the moment that you can detect anomalies in it. In the coming months, we plan to enrich our data with more features that will enable us to introduce additional data flows and models into the Netskope MLAD platform.

future proof words written by 3d hand

Personalization: Good MLAD studies each source separately, yet all in parallel. In Netskope’s MLAD, a source can be anything: a user, device, department, etc. In the real world, different sources tend to be very different in their normal behavior. In our experience, this fine-grained study of each source separately greatly improves signal-to-noise ratios.

Scalability: The algorithm we use can process tens of thousands of events per second per each tenant/model thread on standard hardware. We can run hundreds of such threads in parallel and horizontally scale as we grow. We can analyze the probability of any event in near constant time versus all prior historical events. The time to calculate the probability of any event is linear with the number of dimensions in the event. We detect anomalies as they come in, at a speed that is small constant multiplier over plain I/O of the same data.

User-friendliness: Each anomalous event is dissected and explained in-context using “smoking gun” evidence. For example, we may say, “This event is highly unusual (1 in 9.67 million likelihood) because, for this particular user, the source location is unusual, and the time of day is unusual, and this application has never been used before.” We do this while contrasting rare and unusual events with normal or common patterns. We don’t pass judgment on the maliciousness of an event; we only focus on likelihoods based on historical evidence. It is up to the user, given the information they have (and we don’t) to decide whether to take action on the information our anomaly-detection platform provides.

Dog food: As we were developing and testing MLAD at Netskope, we came across several interesting revelations. Users were downloading sensitive files from one app and then re-uploading those files to a separate app. After taking a closer look, we found that sensitive may have been been exfiltrated;  file names included “Strategic Plan.pdf,” “passwords.txt” and “XYZ_litigation.docx.” This was one of the early indications that MLAD was kicking, and we were on the right track. Since then we’ve been discovering other unusual patterns that we had not anticipated before seeing MLAD in action.

“Solving security” is a tall order. Complex systems with many applications and users, and millions of possible access patterns can never be 100% secure. Our mission is to keep improving our tools. MLAD is one of these tools. We hope it will keep getting better and help our customers in their quest to keep their systems more secure.

Bleiben Sie informiert!

Abonnieren Sie den Netskope-Blog